Early detection of epileptic seizures based on parameter identification of neural mass model

نویسندگان

  • Gatien Hocepied
  • Benjamin Legros
  • Patrick Van Bogaert
  • Francis Grenez
  • Antoine Nonclercq
چکیده

Physiologically based models are attractive for seizure detection, as their parameters can be explicitly related to neurological mechanisms. We propose an early seizure detection algorithm based on parameter identification of a neural mass model. The occurrence of a seizure is detected by analysing the time shift of key model parameters. The algorithm was evaluated against the manual scoring of a human expert on intracranial EEG samples from 16 patients suffering from different types of epilepsy. Results suggest that the algorithm is best suited for patients suffering from temporal lobe epilepsy (sensitivity was 95.0% ± 10.0% and false positive rate was 0.20 ± 0.22 per hour).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

UAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification

Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

ffects of morphine_ dependence on the induction and modulation of epileptic seizures in rats

Kindling is a very suitable animal model for studying basis mechanisms of epilepsy. In this model , repeated exposure to weak electrical or chemical increases neuronal excitability and there fore decreases the threshold for induction of epileptic seizures. According to abundant distribution of opioid peptides and their receptors in different brain structures and also the role of these receptors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 43 11  شماره 

صفحات  -

تاریخ انتشار 2013